摘要:表面粗糙度是影響金剛石薄膜廣泛應(yīng)用的主要因素, 選擇一種合適的拋光方式可以大幅度降低表面粗糙度, 以加速其商業(yè)化應(yīng)用的進(jìn)程。文中針對(duì)內(nèi)孔金剛石薄膜, 提出了一種新的拋光方法———磁性研磨拋光。實(shí)驗(yàn)結(jié)果表明,可有效除去薄膜晶粒外緣的尖角, 而且不會(huì)造成涂層的損傷, 不影響涂層附著力, 是一種溫和的拋光方法, 可以達(dá)到比較理想的拋光效果, 采用磁性研磨拋光的金剛石涂層銅桿拉絲模, 工作壽命比硬質(zhì)合金模具提高8- 10 倍, 滿足了銅桿拉絲對(duì)模具內(nèi)孔表面光潔度的更高要求。
關(guān)鍵詞:金剛石薄膜 磁性研磨 拋光
Study on Magnetic Abrasive Polishing for Diamond Thin Films
Abstract: Rough surface is the obstacle to the application of diamond thin film. A good polishing method can improve great potential for commercializing. In this paper, we propose a new polishing technology for polishing diamond thin film with magnetic abrasive polishing. Experiment results indicate that it is efficient to remove sharp- angle of crystals without injuring thin films. Magnetic abrasive polishing is a facile method, and can reach a better effect. Diamond coated drawing dies of the copper wire using magnetic abrasive polishing may prolong the working life eight to ten times than traditional cemented carbide dies, can meet the demand of smoothness on the interior hole of drawing dies during copper wire drawing.
Key words: diamond thin films; magnetic abrasive; polishing
1. 引言
金剛石薄膜具有優(yōu)異的性能, 是刀具、模具材料的理想涂層, 隨著化學(xué)氣相沉積( CVD) 技術(shù)的發(fā)展, 運(yùn)用這種技術(shù)合成的金剛石薄膜的生產(chǎn)成本顯著降低, 已經(jīng)具有商業(yè)化的應(yīng)用前景[1]。但常規(guī)金剛石薄膜的表面的取向、晶粒尺寸以及厚度都是不均勻的, 表面粗糙度也較高, 一般可達(dá)幾微米, 影響了金剛石薄膜的許多應(yīng)用。例如, 金剛石薄膜涂層刀具和模具都要求有較高的表面光潔度,因而金剛石的后期加工技術(shù)( 包括拋光、平整、金屬化等)變得越來越重要。對(duì)于金剛石薄膜的拋光而言, 由于其硬度高, 化學(xué)性能穩(wěn)定, 且厚度較薄, 并且拋光過程中極易發(fā)生金剛石薄膜剝落, 因此金剛石薄膜的拋光問題已成為擴(kuò)大金剛石薄膜應(yīng)用的關(guān)鍵技術(shù)。
近年來, 國內(nèi)外的學(xué)者通過大量的研究和試驗(yàn), 提出了許多新的金剛石薄膜的拋光方法, 包適化學(xué)輔助機(jī)械拋光、激光拋光、熱化學(xué)拋光、離子束拋光、電火花拋光等[2-6]。這些方法基本上是利用了碳原子的擴(kuò)散與蒸發(fā)和化學(xué)反應(yīng)、微切削、表面的石墨化等來實(shí)現(xiàn)金剛石薄膜的拋光。由于磁性研磨的“ 磁刷”是柔性的, 非常適合內(nèi)孔的拋光[7]。本文提出了運(yùn)用磁性研磨拋光內(nèi)孔金剛石薄膜的新方法, 并研究其拋光前后的膜表面形態(tài)、質(zhì)量以及性能, 探討磁性研磨金剛石薄膜的特點(diǎn)及效果。
2 .試驗(yàn)方法
2.1 磁性研磨的原理
如圖1 所示, 在磁極N 和S 之間形成了一個(gè)磁場(chǎng)。如果在磁場(chǎng)中填充一種既有磁性又有切削能力的磨料, 磨料將沿著磁力線緊密地、有規(guī)則地排列起來, 形成刷子狀即所謂的“ 磁刷”, 并對(duì)工件表面產(chǎn)生一定的壓力。當(dāng)工件置入這個(gè)磁場(chǎng)中, 此“ 磁刷”就會(huì)產(chǎn)生磁力并以壓力的形式作用在工件表面上。當(dāng)工件進(jìn)行旋轉(zhuǎn)運(yùn)動(dòng)和軸運(yùn)動(dòng),磁力研磨刷和工件間就發(fā)生相對(duì)運(yùn)動(dòng),從而對(duì)工件內(nèi)孔表面進(jìn)行研磨。磁性研磨過程中, 單顆磨粒在磁場(chǎng)作用力、磁場(chǎng)保持力和切向摩擦力的共同作用下, 使磨粒穩(wěn)定地保持在拋光區(qū)域中, 實(shí)現(xiàn)對(duì)工件表面的研磨拋光。同時(shí)由于受磁場(chǎng)力的作用, 磨粒將自動(dòng)向拋光區(qū)域匯集, 匯集于被拋光工件內(nèi)表面進(jìn)行研磨, 形成一個(gè)完整的拋光循環(huán)過程。
2.2 磁性磨粒
磁性磨料采用氧化鋁( Al2O3) 、TiC 和鐵粉, 平均直徑D=80μm; 磨粒相的平均直徑: d1=5μm, d2=1. 2μm。加工間隙:1. 5 mm。磁感應(yīng)強(qiáng)度: B=0.5T。平均研磨壓力在20~50 kPa。工件軸向震動(dòng)頻率f = 0~20 Hz。工件軸向振幅A= 0~2 mm。工件轉(zhuǎn)速1140 r/min。工件內(nèi)表面磁感應(yīng)強(qiáng)度為0.3T。磁極末端采用變截面設(shè)計(jì), 磁極和線圈采用DT4 電工鐵, 底板用DT2 電工鐵, 磁通方向磁極、芯鐵、底板的截面面積分別為8 cm2、12.5 cm2、20cm2, 線圈采用φ1mm2的銅漆包線繞制6000 匝, 采用直流供電。最大輸出電壓為25 V, 最大電流輸出為3A。
2.3 金剛石拉絲模具的制備
襯底采用市售的YG6 硬質(zhì)合金拉絲模, 尺寸規(guī)格30×21( 孔徑φ6 mm) , 沉積前首先對(duì)襯底進(jìn)行酸腐蝕去鈷、金剛石粉末研磨粗化和脫碳還原等表面處理, 以保證金剛石涂層的質(zhì)量以及襯底與涂層間的附著力。涂層沉積采用熱絲CVD 法, 采用穿孔直拉熱絲CVD新方法, 獲得耐磨、附著力強(qiáng)、涂層均勻的金剛石涂層拉絲模。它的特點(diǎn)是一根穿過??椎你g絲作為激勵(lì)源熱燈絲, 該熱絲用耐高溫彈簧拉直, 并處于拉絲模孔的軸心位置, 使內(nèi)孔表面的溫度在整個(gè)沉積過程中保持基本均勻。為彌補(bǔ)單根熱絲功率的不足, 在熱絲和拉絲模內(nèi)孔表面施加直流偏壓( 熱燈絲為負(fù)極, 50~150 V) 產(chǎn)生直流放電電流( 0.4~2.0A) , 整個(gè)內(nèi)孔成為等離子體空間, 加速了薄膜的成核和生長。反應(yīng)氣體為氫氣和丙酮, 丙酮濃度為1%- 3%( 摩爾比) , 沉積時(shí)熱燈絲溫度約2200℃, ??妆砻鏈囟燃s800℃, 沉積時(shí)間4~5 h, 涂層厚度5~10μm。涂層拉絲模安裝在磁性內(nèi)孔拋光裝置上進(jìn)行拋光,拋光時(shí)間為20 min, 將拋光前后的金剛石涂層拉絲模用線切割的方法沿軸線方向切成相等的兩半, 然后用掃描電鏡觀察拋光效果, 用Talysurf6 表面粗糙度測(cè)量?jī)x測(cè)量金剛石膜表面粗糙度, 用Raman 光譜檢查薄膜質(zhì)量。
3 .試驗(yàn)結(jié)果與討論
圖2 為內(nèi)孔金剛石涂層在磁性研磨拋光前后的表面形貌, 顯然拋光處理后的試樣變得較為光滑平整, 晶粒除去外端的尖角, 達(dá)到比較理想的效果。金剛石薄膜表面粗糙度由工藝A 的Ra0.4543μm 下降到工藝B 的Ra 0.1078 μm。
圖3 為拋光處理后模具內(nèi)孔上不同位置處的金剛石薄膜的表面形貌, 從圖上可以看出金剛石薄膜都很光滑平整, 顆粒圓滑, 光潔度很高。尤其是定徑帶和工作錐處。圖4 所示為不同位置的拉絲模內(nèi)孔金剛石薄膜的截面圖。從圖中可以看出各個(gè)位置處的金剛石薄膜厚度都很均勻。
圖5 所示為拋光后模具內(nèi)孔不同位置處金剛石薄膜的Raman 譜圖。從圖中可以看出, 內(nèi)孔表面的金剛石薄膜均具有明顯的金剛石特征峰, 其中工作錐處的金剛石薄膜質(zhì)量相對(duì)于其它位置的金剛石薄膜質(zhì)量更好, 除了1332 cm- 1 處的金剛石特征峰外, 無其它明顯的峰值, 而在定徑帶以及出口錐處還含有一定的石墨峰, 可能是由于熱絲的位置太近或者太遠(yuǎn), 導(dǎo)致金剛石的質(zhì)量不是很純。從內(nèi)孔拋光后表面上不同位置處的Raman 譜圖可以看出, 在內(nèi)孔表面上沉積的金剛石薄膜, 在拋光后整體質(zhì)量良好, 而且金剛石峰偏離標(biāo)準(zhǔn)峰1332 cm- 1 處不多, 說明薄膜內(nèi)部應(yīng)力不大, 也可以較好地保證金剛石薄膜的附著力。
采用磁性研磨拋光后金剛石涂層銅桿拉絲模, 涂層表面的光潔度進(jìn)一步提高, 滿足了銅桿拉絲對(duì)模具內(nèi)孔表面光潔度的更高要求。涂層拉絲模的工作壽命比硬質(zhì)合金提高8~10 倍, 單個(gè)模具產(chǎn)量可達(dá)3000 t, 拉絲質(zhì)量明顯優(yōu)于硬質(zhì)合金拉絲模。
4.結(jié)論
利用磁性研磨拋光金剛石涂層表面, 可有效除去晶粒外端的尖角, 而且不會(huì)造成涂層的損傷, 不影響涂層附著力, 可以達(dá)到比較理想的效果, 從而突破常規(guī)金剛石薄膜因表面粗糙、拋光難度大、對(duì)涂層拉拔模具無法滿足實(shí)際應(yīng)用需要的瓶頸, 對(duì)于CVD 金剛石涂層技術(shù)的產(chǎn)業(yè)化具有重要意義。
[ 參考文獻(xiàn)]
[ 1] 陳光華, 張陽.金剛石薄膜的制備與應(yīng)用[M] .北京: 化學(xué)工業(yè)出版社, 2004.
[ 2] C Y Cheng, H Y Tsai, C H Wu, et al. An oxidation enhancedmechanical polishing technique for CVD diamond films [ J] .Diamond and Related Materials, 2005, 14: 622- 625.
[ 3] S M Pimenov, V V Kononenko, V G Ralchenko, et al. Laserpolishing of diamond plates[ J] . Applied Physics A Materials Science&Processing, 1999, 69:81- 88.
[ 4] A M Zaitsev, G Kosaca, B Richarz, et al. Thermochemical polishingof CVD diamond films [ J] . Diamond and Related Materials,1998, 7: 1108- 1117.
[ 5] 茍立, 萬靜, 冉均國, 等. 金剛石薄膜的離子束拋光實(shí)驗(yàn)初探[ J] .稀有金屬材料與工程, 2002(9):268- 271.
[ 6] 郭鐘寧, 王成勇, 劉曉寧, 等.CVD 金剛石膜電火花拋光的機(jī)理研究[ J] . 電加工與模具, 2001(4):13- 16.
[ 7] 張建華. 精密與特種加工技術(shù)[M] . 北京: 機(jī)械工業(yè)出版社,2003.