中国熟妇浓毛hdsex,亚洲精品V天堂中文字幕,欧美最猛性xxxxx69,香蕉久久久久久av成人

您好 歡迎來到超硬材料網(wǎng)  | 免費注冊
遠發(fā)信息:磨料磨具行業(yè)的一站式媒體平臺磨料磨具行業(yè)的一站式媒體平臺
手機資訊手機資訊
官方微信官方微信

聚晶金剛石熱降解表征

關鍵詞 金剛石 , 研磨 , 微粉 , 石墨|2015-01-20 16:10:43|技術信息|來源 中國超硬材料網(wǎng)
摘要 引言聚晶金剛石(PCD)是金剛石微粒在高溫高壓下(1450-1750℃;5.5-8.0GPa)由金屬結(jié)合劑粘合而成。由于其硬度高韌性好,PCD常用于木材加工、油氣鉆探和汽車工業(yè)有色...
  引言

       聚晶金剛石(PCD)是金剛石微粒在高溫高壓下(1450-1750℃;5.5-8.0GPa)由金屬結(jié)合劑粘合而成。由于其硬度高韌性好,PCD常用于木材加工、油氣鉆探和汽車工業(yè)有色金屬合金的加工。在制造PCD時,將金剛石微粉放置在鎢/鈷襯底上,燒結(jié)過程中襯底上的鈷融化并滲入金剛石層,從而使金剛石顆粒粘合在一起。  

       PCD雖然性能優(yōu)越,但在超過700℃的高溫下時會受熱不穩(wěn)定性影響,從而導致耐磨性降低,工具壽命縮短。對于PCD材料而言,一般會有兩次高溫影響,第一次是制造PCD工具時,利用高溫釬焊將PCD加工成工具;第二次是鉆削時摩擦生熱。

       早前已有一些對金屬燒結(jié)助劑影響PCD熱穩(wěn)定性影響的研究,以及對此影響做出解釋的兩種假設。金屬燒結(jié)助劑的熱膨脹系數(shù)(α)通常要比金剛石高很多,在溫度上升過程中,鈷(α=14×10-6/℃)比金剛石(α=1×10-6/℃)膨脹更強烈,從而引起裂紋和微碎裂。另外,鈷還會分解金剛石微粒并轉(zhuǎn)化其為石墨;金剛石轉(zhuǎn)化為石墨的過程中有一個3.6g•cm-3到的2.0g•cm-3的密度變化,體積膨脹就會加大對金剛石結(jié)構(gòu)的力度,從而引起材料裂紋。

       實驗已經(jīng)采用幾種辦法來解決PCD熱不穩(wěn)定性的問題。一種是通過酸濾取部分或全部去除鈷,另一種方法是沒有鈷燒結(jié)助劑的條件下燒結(jié)。超硬納米聚晶金剛石(NPD)材料是在高溫高壓(2300℃;15GPa)下直接將石墨/含碳材料轉(zhuǎn)化為金剛石;第三種方法是用陶瓷相替代金屬結(jié)合劑。

       本實驗旨在研究PCD材料在溫度上升過程中的熱降解機理,并做了熱穩(wěn)定性測試。實驗第一部分是PCD工具熱機械研磨測試,第二部分是在電子顯微鏡和X射線衍射幫助下對PCD化學成分變化做了研究。

       實驗材料和方法

       長度為16mm直徑為16mm的柱形PCD鉆頭刀片;每個刀片都有一層2mm厚的硬質(zhì)合金基體PCD覆層。將粒度為10μm的金剛石微粒放置在鎢-鈷襯底上,5.5GPa/1450℃的條件下處理10分鐘,鈷含量為12wt.%。

       熱機械研磨實驗

       研磨實驗在抗壓強度為200MPa的花崗巖上進行,不使用冷卻液。將加工參數(shù)調(diào)整為PCD工具能夠在工作過程中產(chǎn)生高溫的值。PCD刀具在加工平面上的縱向前角為10°,轉(zhuǎn)速1140rpm,切削深度2.5mm,進給速度0.04mm/rev。PCD切割工具相對花崗巖的切割幾何形狀如圖1所示。

 
       K型熱電偶接觸金剛石表面(位置B)測得溫度并將其作為切割時間的一個函數(shù)。相同的工具用于每一個測試,測試在400℃,500℃時停止,在600℃時失敗。每一個工具都用電火花加工取得橫截面然后進行拋光處理以做微結(jié)構(gòu)分析。用Ga+離子-聚焦粒子束(FIB)掃描電鏡進行薄片處理以供透射電鏡對磨痕降解區(qū)進行研究?;陔娮幽芰繐p失能譜的掃描投射電子顯微鏡用來確定加工過程中形成的相。

       氬氣熱浸

       實驗第二部分從PCD刀片上獲取幾個3mm直徑的圓片,將其切削成100μm厚度。在熱處理之前先用X衍射進行試樣監(jiān)測以建立試樣化學成分。檢測結(jié)果發(fā)現(xiàn)熱處理之前的試樣有著類似的組份(相和晶胞參數(shù))。然后將試樣放在管狀石英爐中,氬氣環(huán)境下進行加熱,氬氣流量設置為2 l/s。隨后將試樣放入冷卻區(qū)15分鐘以去除殘余的氧,然后再放去加熱區(qū)。700℃、750℃、800℃和850℃下分別放置2小時以研究溫度對材料熱降解的影響。此外,再選試樣在800℃下分別放置0.5小時、2小時、4小時和6小時以研究時間對材料熱降解的影響。熱處理之后用X射線衍射(λ=1.789Å)進行鈷晶胞參數(shù)和相的測定。

       用PIPS™ 型離子減薄儀對試樣進行機械拋光至電子透明程度,然后進行TEM研究。用電子衍射和能量色散譜對試樣的碳化物析出物進行表征,用STEM-EELS光譜成像對石墨碳相進行研究。

       實驗結(jié)果

       圖2為PCD材料微結(jié)構(gòu)的反向散射SEM圖。根據(jù)材料拋光面的反向散射SEM分析,該材料的結(jié)合劑總含量為9±1vol.%。
       熱機械研磨實驗

       實驗第一部分對PCD工具進行了研磨試驗,將熱電偶放在金剛石表面中心測得花崗巖和PCD工具界面的溫度。然后在顯微鏡下對拋光橫截面進行觀察,如圖3a-c。工具溫度在400℃以下時無明顯裂紋(圖3a);500℃時切割界面出現(xiàn)模糊的裂紋(圖3b);溫度繼續(xù)上升直至實驗失敗時出現(xiàn)大量裂紋并導致密集的結(jié)構(gòu)降解(圖3c)。這些裂紋也意味著切削效率和工具壽命的降低。


 
       為研究裂紋出現(xiàn)的機理,從500℃時的樣式上獲取一段FIB切片如圖4所示。由SEM二次電子像可以看出裂紋成間粒狀,但也觀察到了穿晶擴展的裂紋。圖5為STEM高角環(huán)形暗場像。進行STEM–EELS光譜成像并把各種化學相映射在感興趣區(qū),刀片顯示了一個各種相的色彩圖:鈷(紅色),石墨(青綠色),金剛石(綠色)。很明顯可以看出金剛石轉(zhuǎn)化為石墨的過程發(fā)生在這一區(qū)域。這表明接觸面產(chǎn)生的溫度足以使鈷能夠催化地和金剛石發(fā)生反應從而形成石墨。這也證明了之前的一個假設,金剛石的石墨化導致了裂紋,而并非完全是熱膨脹的緣故。
   
氬氣熱浸

       熱處理之前對試樣進行X射線衍射,觀察發(fā)現(xiàn)鈷的晶胞參數(shù)從理論值3.54 Å增加愛到純fcc鈷3.59 Å如圖6所示。這主要是由于固溶體鎢的原因。在燒結(jié)過程中,熔融鈷分解了襯底WC/Co上的一部分鎢和碳。高溫燒結(jié)過程中額外的鎢也從襯底分散到了金剛石層上從而引起固溶體鈷中出現(xiàn)了鎢和碳。鎢原子置換式融入鈷(2-15wt.%,125℃),碳原子間隙式融入鈷(0-0.2wt.%,上升溫度)。固溶體元素預計會提高鈷晶胞參數(shù)。本研究中鈷晶胞參數(shù)的增長主要是由于固溶體鎢的原因。這一預計主要是由于鎢散射因子導致鈷相峰高度的增加而引起的。如果主要影響是固溶體碳,那么鈷峰高度就不會增加,因為碳的散射因子要比鎢低很多。

 
       PCD試樣分別在700℃、750℃、800℃和850℃下加熱2小時,每個試樣得出的室溫X射線衍射類型如圖6所示。隨著試樣被加熱到設定的溫度,鈷晶胞參數(shù)逐漸降低。850℃加熱2小時后鈷晶胞參數(shù)為3.54Å,相當于純鈷的值。此外,在溫度處理過程中η相(Co,W)6C沉淀。該相的峰高度作為溫度的一個函數(shù),如圖7所示。

 
       再取試樣在800℃下分別加熱0.5小時、2小時、4小時和6小時。得到的室溫X射線衍射類型如圖8所示。鈷晶胞參數(shù)隨著時間逐漸降低,800℃下加熱6小時后晶胞參數(shù)為3.54 Å,這說明鈷晶胞參數(shù)變化至純鈷值。在溫度處理過程中再一次觀察到η相(Co,W)6C沉淀。該相的峰高度作為時間的一個函數(shù),如圖9所示。


       圖10為750℃下加熱2小時后TEM觀測到的降解的鈷坑。在鈷-金剛石交界面有黑色顆粒。能譜定性分析顯示該相有W,Co和C組成,沉淀鎢含量要比周圍鈷坑要高許多。對黑色顆粒的電子衍射分析顯示該相晶胞參數(shù)為a0=11.05±0.05 Å,擁有fcc晶體結(jié)構(gòu)。這與X射線衍射分析中發(fā)現(xiàn)的(Co,W)6C相類似。
       實驗結(jié)合EELS利用HAADF-STEM來對試樣進行石墨監(jiān)測。圖11為800℃下加熱2小時的鈷坑。在共生金剛石相(灰色區(qū)域)中可以觀察到鈷坑(明亮區(qū)域)。鈷坑中的暗色區(qū)域經(jīng)EELS分析為石墨。750℃加熱2小時后沒有發(fā)現(xiàn)任何金剛石轉(zhuǎn)化為其他物質(zhì)。圖12a為標準材料的鈷坑,在800℃下加熱0.5小時后,觀察到在鈷中有石墨成核。12b為典型的成核圖。隨著時間和溫度的增加,石墨坑的尺寸和數(shù)量密度大大增加。12c為 850℃下加熱2小時的試樣微結(jié)構(gòu)。
       結(jié)論

       如果將熱機械測試試樣的熱降解狀態(tài)與退火試樣相比,研磨試驗中工具接觸面產(chǎn)生的溫度要遠遠高于800℃。PCD材料上的裂紋主要是由材料上的各種力所致;金剛石結(jié)構(gòu)內(nèi)的裂紋主要是由工具和工件間的外力所致;而內(nèi)力主要是由于金剛石-石墨轉(zhuǎn)化時的體積膨脹以及金剛石和鈷之間的不同熱膨脹屬性所致。固溶體鎢和溶解碳反應生成的(Co,W)6C值得進一步研究,它可能會延遲石墨的生成。 
 

① 凡本網(wǎng)注明"來源:超硬材料網(wǎng)"的所有作品,均為河南遠發(fā)信息技術有限公司合法擁有版權或有權使用的作品,未經(jīng)本網(wǎng)授權不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權使用作品的,應在授權范圍內(nèi)使用,并注明"來源:超硬材料網(wǎng)"。違反上述聲明者,本網(wǎng)將追究其相關法律責任。

② 凡本網(wǎng)注明"來源:XXX(非超硬材料網(wǎng))"的作品,均轉(zhuǎn)載自其它媒體,轉(zhuǎn)載目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責。

③ 如因作品內(nèi)容、版權和其它問題需要同本網(wǎng)聯(lián)系的,請在30日內(nèi)進行。

※ 聯(lián)系電話:0371-67667020

延伸推薦

【每日科普】石墨烯納米超硬材料的電學性能

石墨烯具有優(yōu)異的電學性能,其載流子遷移率極高,可達2×105cm2/(V?s)。在石墨烯納米超硬材料中,若石墨烯的導電網(wǎng)絡能夠有效構(gòu)建,材料可展現(xiàn)出良好的導電性。例如,在一些復合材...

日期 2025-04-30   超硬新聞

美暢股份終止高效電鍍金剛石線生產(chǎn)線項目

4月24日,美暢股份發(fā)布關于部分投資建設項目終止的公告。公告顯示,該公司董事會審議通過了兩項議案,分別終止投資建設的金剛切割絲基材項目和高效電鍍金剛石線...

日期 2025-04-30   超硬新聞

力量鉆石申請大腔體金剛石高效合成工藝專利,提高生產(chǎn)效...

金融界2025年4月28日消息,國家知識產(chǎn)權局信息顯示,河南省力量鉆石股份有限公司申請一項名為“一種大腔體金剛石高效合成工藝”的專利,公開號CN119858916A,申請日期為20...

石墨烯納米超硬材料的力學性能

石墨烯本身具有極高的本征強度,理論上其強度可達130GPa,是鋼鐵的數(shù)百倍。當與超硬材料復合后,材料的整體力學性能得到顯著提升。例如,上海交通大學沈彬教授課題組制備的石墨烯共價裝甲...

日期 2025-04-29   超硬新聞

烏海年產(chǎn)300萬克拉金剛石項目加速落地

在烏海高新技術產(chǎn)業(yè)開發(fā)區(qū),總投資50億元的MPCVD金剛石項目進入建設沖刺階段。隨著綜合辦公樓主體封頂及廠房鋼結(jié)構(gòu)施工啟動,這一年產(chǎn)300萬克拉金剛石的...

日期 2025-04-28   超硬新聞

恒盛能源:CVD金剛石產(chǎn)品開拓第二增長曲線

4月15日,恒盛能源發(fā)布2024年年報,實現(xiàn)營業(yè)收入8.14億元,較上年增長3.21%,其中主營業(yè)務增長穩(wěn)健,收入8.07億元,同比增加3.08%;歸屬于上市公司股東的凈利潤1.3...

日期 2025-04-28   超硬新聞

哈爾濱工業(yè)大學(深圳)嘉興固美科技有限公司申請納米聚...

金融界2025年4月25日消息,國家知識產(chǎn)權局信息顯示,哈爾濱工業(yè)大學(深圳)(哈爾濱工業(yè)大學深圳科技創(chuàng)新研究院)、嘉興固美科技有限公司申請一項名為“一種納米聚晶金剛石及其制備方法...

年產(chǎn)金剛石300萬克拉!烏海這一項目加速推進中

近日,記者來到位于烏海高新技術產(chǎn)業(yè)開發(fā)區(qū)的碳基芯材科技(烏海)有限公司MPCVD金剛石項目建設現(xiàn)場,敲擊聲、切割聲、機械轟鳴聲此起彼伏,工人們在各區(qū)域緊...

日期 2025-04-27   超硬新聞

上海天岳申請?zhí)蓟?金剛石復合襯底專利,提高復合襯底...

金融界2025年4月24日消息,國家知識產(chǎn)權局信息顯示,上海天岳半導體材料有限公司申請一項名為“一種碳化硅-金剛石復合襯底及應用”的專利,公開號CN119812142A,申請日期為...

日期 2025-04-25   行業(yè)專利

中國有色桂林礦產(chǎn)地質(zhì)研究院申請納米金剛石復合片專利,...

金融界2025年4月24日消息,國家知識產(chǎn)權局信息顯示,中國有色桂林礦產(chǎn)地質(zhì)研究院有限公司申請一項名為“一種納米金剛石復合片及其制備方法和應用”的專利,公開號CN119795680...